1. Bert has a part-time job making pizzas. He can make 3 different crusts: thin, medium, and extra thick. There are 10 vegetable toppings and 4 meat toppings to choose from as well.

 a. How many different pizza combinations can Bert make if each pizza must come with only 1 meat and only 1 vegetable topping? Explain your answer.

 Solution:

 \[3 \text{ crusts} \times 10 \text{ vegetables} \times 4 \text{ meats} = 120 \text{ different pizzas}\]

 b. How many different pizza combinations can Bert make if each pizza must come with 2 meat toppings and 2 vegetable toppings? Explain your answer.

 Solution:

 \[3 \text{ crusts} \times (10 \times 9 \div 2) \text{ vegetables} \times (4 \times 3 \div 2) \text{ meats} = 810 \text{ different pizzas}\]
The costs for mailing packages of certain weights at a mail delivery service are listed in the table below.

<table>
<thead>
<tr>
<th>Weight (lbs)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>$2.50</td>
</tr>
<tr>
<td>1</td>
<td>$5.00</td>
</tr>
<tr>
<td>2</td>
<td>$10.00</td>
</tr>
<tr>
<td>2.5</td>
<td>$12.50</td>
</tr>
</tbody>
</table>

2. Write an equation that expresses the cost c in terms of the weight w.

 Solution:
 \[c = 5w \]

b. Using the formula from part a, what is the cost of mailing a package that weighs \(\frac{3}{4} \) pounds?

 Solution:
 \[
 c = 5w \\
 c = 5(3.25) \\
 c = 16.25
 \]

 The package would cost $16.25 to mail.
3. Part of the geometric solid is hidden from view.

a. Draw all of the possible top views of the solid.

Solution:

```
\[ \text{Top View 1} \]
```

```
\[ \text{Top View 2} \]
```

```
\[ \text{Top View 3} \]
```

b. If each of the blocks is 1 cubic inch, determine the range of possible volumes of the solid.

Solution:

24 cubic inches to 32 cubic inches

c. Determine the range of possible surface areas of the solid.

Solution:

64 square inches to 70 square inches
4. A camper can have a total weight of 7,400 pounds including cargo and passengers. Without water in its water tanks, the camper cargo weighs 7,155 pounds. If water weighs 8.3 pounds per gallon, how many gallons of water can be loaded into the tanks before the camper exceeds its total weight capacity?

Solution:
7400 – 7155 = 245 pounds available
245 ÷ 8.3 ≈ 29.5 gallons
5. A machine produces a part for a certain automobile. The part needs to be produced to within 0.01 inch of the standard size to fit correctly. During a recent inspection, 3 out of 420 parts were found to not fit correctly. In the next production cycle, 700 parts will be produced. How many parts are expected not to fit correctly? Solve the problem by writing a proportion.

Solution:
\[
\frac{3}{420} = \frac{x}{700}
\]
\[x = 5\]

Five parts are expected to not fit correctly.
6. Sasha works at a greenhouse during the summer. She has to wrap mum plants with colored foil. There are 130 rows with 40 mums in each row. Each mum must be wrapped in one sheet of foil before it can leave the greenhouse. Colored foil comes in boxes of 250 sheets and costs $34.25 per package. What is the total cost to wrap all the mums? Show your work.

Solution:

\[\text{130} \times \text{40} = 5,200 \text{ plants} \]

\[\frac{5,200}{250} = 20.8 = 21 \text{ boxes} \]

\[21 \times \$34.25 = \$719.25 \]
7. The temperature at 6:00 P.M. was 13°C. Between 6:00 P.M. and midnight, the temperature dropped 2°C per hour. After midnight the temperature continued to drop. At 5:00 A.M. the temperature was 4°C below zero.

a. What was the temperature at midnight?

Solution:

\[13 - 6(2) = 1°C \]

b. What was the drop in temperature from midnight to 5:00 A.M.?

Solution:

\[-4 - 1 = -5 = 5°C \text{ drop in temperature} \]

c. If the temperature then rose 28°C in 4 hours, what was the temperature at 9:00 A.M.?

Solution:

\[-4 + 28 = 24°C \]
8. Martin surveyed his classmates and created the graph shown below.

If Martin surveyed and chose 65 classmates, how many students chose soccer as their favorite sport?

Solution:

\[0.18 \times 65 = 11.7\]; round up to 12 classmates so 12 students chose soccer as their favorite sport.
9. A rectangle has coordinates \(A(-1, 4), B(-1, -3), C(4, -3), \) and \(D(4, 4). \)

a. Graph the points and draw the rectangle.

Solution:

```
\begin{center}
\begin{tikzpicture}
\begin{axis}[
axis lines = middle,
huge,
axis line style = thick,
axis y line = center,
axis x line = center,
axis y discontinuity = codec,
axis x discontinuity = codec,
\end{axis}
\end{tikzpicture}
\end{center}
```

b. Determine the area of the rectangle.

Solution:
35 square units

c. Move the coordinates as follows:
\(A(-1, 4) \) to \(A'(1, 5) \), \(C(4, -3) \) to \(C'(5, -3) \), and \(D(4, 4) \) to \(D'(5, 5) \).
Point \(B \) stays the same. Determine the area of the new rectangle.

Solution:
48 square units

d. What is the percent increase in the area of the rectangle after changing the coordinates? Round to the nearest percent.

Solution:
\[
\frac{13}{35} = 0.3714 = 37\% \text{ increase}
\]
10. If you look at the side view of the picnic table, you can see a triangular shape made by the intersection of the two legs and the table top. If the perimeter of the triangle is 76 inches and the legs are 30 inches apart, how long are the legs from the point of intersection to the table top? Show your work.

Solution:

\[
P = \text{side} + \text{side} + \text{side}
\]

\[
76 = 30 + x + x
\]

\[
76 = 30 + 2x
\]

\[
46 = 2x
\]

\[
23 = x
\]

Each leg is 23 inches long from the point of intersection to the table top.
11. The probabilities of winning certain games at a festival are given below.

<table>
<thead>
<tr>
<th>Game</th>
<th>Probability of Winning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring toss</td>
<td>$\frac{1}{6}$</td>
</tr>
<tr>
<td>Cake walk</td>
<td>$\frac{5}{12}$</td>
</tr>
<tr>
<td>Pumpkin toss</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>Speedy cars</td>
<td>$\frac{2}{5}$</td>
</tr>
</tbody>
</table>

a. What game are you most likely to win?

Solution:

Ring toss = 0.166
Cake walk = 0.416
Pumpkin toss = 0.50
Speedy cars = 0.40

You are most likely to win the pumpkin toss since the probability is the greatest at 0.50.

b. What is the probability of not winning the cake walk?

Solution:

$$1 - \frac{5}{12} = \frac{7}{12}$$

c. What are the odds of winning the ring toss?

Solution:

1:5

d. What is the probability of winning the pumpkin toss two times in a row?

Solution:

$$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$
12. You are the new manager of the concession stands at the circus. In
case to increase profits you have decided to replace the current
container in which popcorn is sold. The company that you purchase
containers from has a choice of three different containers. You have
decided to charge $3.75 for a container of popcorn.

a. Which container would you choose in order to make the most
profit per container sold?

Solution:

Find the volume of each container:

- **Cylinder:**
 \[V = \pi r^2 h = \pi (7)^2 (16) = 2461.8 \text{ cm}^3 \]

- **Prism:**
 \[V = 15 \cdot 12 \cdot 16 = 2880 \text{ cm}^3 \]

- **Cone:**
 \[V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi (10)^2 (26) = 2721.3 \text{ cm}^3 \]

The manager would most likely choose the cylinder since less
popcorn would be required to fill it and a greater profit per
container would be made.

b. If the price of making a container is based on the amount of
material needed to make each container, which container would
be the cheapest to produce?

Solution:

Find the surface area of each container. Notice that the cylinder
and prism each have only one base and that the cone has
none, because there are no tops on the containers.

- **Cylinder:**
 \[S = 2\pi rh + \pi r^2 = 2(3.14)(7)(16) + 3.14(7^2) = 857.22 \text{ cm}^2 \]

Copyright © by Holt, Rinehart and Winston. All rights reserved.
Prism: \[S = (15 \times 12) + 2(15 \times 16) + 2(12 \times 16) = 1044 \text{ cm}^2 \]

Cone: Find the slant height using the Pythagorean Theorem.
\[c^2 = 10^2 + 26^2 \]
\[c^2 = 100 + 676 \]
\[c = \sqrt{776} \approx 27.9 \]
\[S = \pi rl \]
\[S = (3.14)(10)(27.9) \]
\[S = 876.06 \text{ cm}^2 \]

The cylinder would be the cheapest to produce.
13. A cell phone service offers two rate plans, limited and unlimited.

<table>
<thead>
<tr>
<th>Rate Plan</th>
<th>Flat Rate</th>
<th>Free Airtime</th>
<th>Overtime Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited</td>
<td>$19.95</td>
<td>150 minutes</td>
<td>20 cents/minute</td>
</tr>
<tr>
<td>Unlimited</td>
<td>$39.95</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

a. Write two equations that show the cost for the limited and unlimited plans. Let cost = \(c \) and minutes = \(m \).

Solution:

Define the variables used.

Let \(C \) be the cost of the phone plan.
Let \(m \) be the number of minutes of airtime.

Write an equation for the limited plan.

limited plan: \[C = 19.95 + 0.2(m - 150), \quad m > 150 \]

Write an equation for the unlimited plan.

unlimited plan: \[C = 39.95 \]

b. How much airtime would it take for the limited plan to cost the same as the unlimited plan? Show or explain how you found your answer.

Solution:

Substitute \(C = 39.95 \) for \(C \) in the limited plan’s equation and solve for \(m \).

\[
egin{align*}
C &= 19.95 + 0.2(m - 150) \\
39.95 &= 19.95 + 0.2m - 30 \\
39.95 &= -10.05 + 0.2m \\
39.95 + 10.05 &= 0.2m \\
50 &= 0.2m \\
50 &= \frac{0.2m}{0.2} \\
250 &= m
\end{align*}
\]

It would take 250 minutes for the limited plan to cost the same as the unlimited plan. Therefore, a person should consider purchasing the unlimited plan if he or she plans to use more than 250 minutes of airtime per month.
14. Doris created an input-output machine. Listed below are the results for five different numbers.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>–1</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>–3</td>
</tr>
<tr>
<td>7</td>
<td>–7</td>
</tr>
</tbody>
</table>

a. Write an algebraic equation to describe this pattern in terms of \(x \) and \(y \).

Solution:
The equation for the ordered pairs in this table is \(y = –2x + 7 \).

b. What is the slope and the \(y \)-intercept of the graph of this function? Explain your reasoning.

Solution:
To find the slope, choose two points and use the slope formula.

\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]

Use the points (–1, 9) and (0, 7).

\[
m = \frac{7 - 9}{0 - (-1)} = \frac{-2}{1}
\]

The slope is –2. The \(y \)-intercept is 7, because that is where the line crosses the \(y \)-axis.

c. Graph this equation on a coordinate graph. How does this graph differ from a line that has a slope of 2?

Solution:

Copyright © by Holt, Rinehart and Winston. All rights reserved.
A line with a slope of 2 rises 2 units for every 1 unit it moves to the right. A line with a slope of −2 falls 2 units for every 1 unit it moves to the right.
15. Your dad has just completed his new barn and needs to construct the staircase to the second floor. He determined that he would need 14 treads (what you step on) and 15 risers (the backs of the steps). While cleaning up, he accidentally threw out the plans for the staircase. Based on the two measurements below, determine the width of each tread.

Solution:
Determine the width in inches of the staircase.

Convert 11 ft 6\(\frac{1}{4}\) in.

\[
11 \text{ ft} \times \frac{12 \text{ in.}}{1 \text{ ft}} = 132 \text{ in.}
\]

\[
6\frac{1}{4} \text{ in.} = 6.25 \text{ in.}
\]

\[
132 \text{ in.} + 6.25 \text{ in.} = 138.25 \text{ inches}
\]

There are 14 treads. Divide the width by 14: 138.25 in. ÷ 14 = 9.875 in.
Each tread is \(9\frac{7}{8}\) inches wide.
16. The following data shows the pulse rates for 24 eighth-graders, taken after three weeks of physical education.

92 84 77 82 88 84 76 62
76 84 88 85 90 76 82 84
64 76 83 85 82 78 90 76

a. Determine the mean, median, and mode of the data.

Solution:
- Mean: \(\frac{\text{sum of the rates}}{24} = \frac{1944}{24} = 81 \)
- Median: Place the scores in order from lowest to highest and find the middle score.
 62 64 76 76 76 76 77 78 82 82 82 83 84 84 84 84 85 85 88 88 90 90 92
 \(\frac{82 + 83}{2} = 82.5 \)
- Mode: 76

b. Make a stem-and-leaf plot of the data.

Solution:

<table>
<thead>
<tr>
<th>Stems</th>
<th>Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2 4</td>
</tr>
<tr>
<td>7</td>
<td>6 6 6 6 6 7 8</td>
</tr>
<tr>
<td>8</td>
<td>2 2 2 3 4 4 4 4 5 5 8 8</td>
</tr>
<tr>
<td>9</td>
<td>0 0 2</td>
</tr>
</tbody>
</table>

c. What percent of the eighth-graders have pulse rates between 76 and 88?

Solution:

\(\frac{19}{24} = 0.791666 = 79.16\% \)
d. Using 60–64, 65–69, etc. as intervals, make a histogram that represents the data.

Solution:

![Histogram of Pulse Rates of Eighth Graders]
17. A corner lot is shaped like a right triangle, as shown in the diagram. Silver Drive and Smith Road intersect at right angles. The property measures 1,440 feet along Smith Road and 920 feet along Silver Drive.

a. What is the distance along the property edge that doesn’t face Silver Drive or Smith Road, to the nearest foot?

Solution:
\[a^2 + b^2 = c^2 \]
\[1,440^2 + 920^2 = c^2 \]
\[2,073,600 + 846,400 = c^2 \]
\[2,920,000 = c^2 \]
\[c = 1,709 \text{ ft} \]

The distance is 1,709 feet.

b. What is the area of the lot?

Solution:
\[A = \frac{1}{2}bh \]
\[A = \frac{1}{2} (1,440)(920) \]
\[A = 662,400 \text{ ft}^2 \]

The lot is 662,400 square feet.
18. Your company is trying to decide which of three possible long-distance phone plans is the best deal. Use the table of information to answer each question.

<table>
<thead>
<tr>
<th>Plan</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan A</td>
<td>$5.95 per month and $0.10 per minute</td>
</tr>
<tr>
<td>Plan B</td>
<td>200 minutes for $12.95 and $0.07 per minute for all minutes over 200</td>
</tr>
<tr>
<td>Plan C</td>
<td>flat rate of $22.75 per month</td>
</tr>
</tbody>
</table>

a. What piece of information is most important in determining which plan is the least expensive?

Solution:

The number of minutes used per month.

b. Which plan is the least expensive if 50 minutes of long distance are used per month?

Solution:

Plan A = 5.95 + 0.10(50) = $10.95
Plan B = $12.95
Plan C = $22.75
Plan A is the least expensive.

c. Which plan is the least expensive if 220 minutes of long distance are used per month?

Solution:

Plan A = 5.95 + 0.10(220) = $27.95
Plan B = 12.95 + 0.07(20) = $14.35
Plan C = $22.75
Plan B is the least expensive.

d. Write an equation for each plan.

Solution:

Plan A: $y = 0.10x + 5.95$
Plan B: $y = 12.95 + 0.07(x – 200)$ for all minutes over 200
Plan C: $y = 22.75$

e. Your company is trying to decide between Plan B and Plan C. Plan C would be the least expensive plan if the company uses over how many minutes of long distance per month?

Solution:

$22.75 = 12.95 + 0.07(x – 200)$
$9.80 = 0.07x – 14$
$23.80 = 0.07x$
$340 = x$

The company would have to use over a total of 340 minutes in order for Plan C to be cheaper.